VCE Physical Education – Sports Science **Your Mission**: Step into the role of a sports performance analyst. Your team will explore how the body's systems power elite athletes and use cutting-edge sports science technology to measure and interpret real performance data. ## **Pre-Visit Activity** | Reaction | 10 mins | Watch: How to improve reaction times like a pro | | | |-------------|--|---|--|--| | Time Like a | | Link: https://www.youtube.com/watch?v=0l4xEIJDEZc | | | | Pro | | Checkpoint prompts: | | | | | | Which body systems are involved in explosive sport performance? What is the role of the muscular system in a vertical jump? How do the cardiovascular + respiratory systems combine to deliver oxygen to muscles? How might these systems differ in sprinters vs endurance athletes? | | | | System | 20 mins | Task: Create a simple systems flow diagram (paper, whiteboard, or | | | | Synergy | | Canva) showing: | | | | Мар | | Brain → nerves → muscles → movement. | | | | | | Heart + lungs → blood → muscles → recovery. | | | | | | Add a note on how fatigue affects each system. | | | | | | Checkpoint: Can you show at least one positive feedback loop (e.g., increased breathing rate → more oxygen delivery)? | | | | Mini | 15 mins | Pair up and test reaction times using a ruler drop OR an online tool | | | | Experiment | Experiment (https://www.humanbenchmark.com/tests/reactiontin | | | | | | | Record 3 trials per student. | | | | | | Discuss : What factors (fatigue, focus, anticipation) might affect your scores? | | | ## Post-Visit Activity | Data Forensics | | Students receive anonymised Excel data from their workshop, | |-------------------|---------|--| | | | including: | | | | Heart rate across the day | | | | Timing gates (Box Drill, L Drill, 5-10-5) | | | | Force decks (Countermovement Jump, IMTP) | | | | Gym Aware RS (Peak/Mean Velocity) | | | | Tasks: | | | | Create bar graphs comparing reaction time by drill. | | | | Analyse asymmetry in jump results (left vs right leg). | | | | Calculate average velocities for barbell lifts. | | | | Checkpoint: Which students show signs of imbalance, fatigue, or | | | | explosive strength? | | Systems in Action | 20 mins | Discussion prompts: | | | | What does your reaction time data suggest about
neuromuscular performance? | | | | How could an athlete use asymmetry results to guide
training/rehab? | | | | Why are force plates more reliable than visual assessment? | | | | What muscles drive a countermovement jump? | | | | How do muscular and respiratory systems interact during
repeated efforts? | | Training | 20 mins | Scenario: A student's data shows poor concentric velocity + | | Recommendations | | high asymmetry. | | | | Task: In pairs, write a 3-point training prescription for this | | | | athlete. Use terms like: | | | | Strength-speed | | | | Velocity zones | | | | Movement patterns | | | | Recovery strategies | | | | Teams share their recommendations in a 1-minute pitch. |