VCE Physical Education – Sports Science **Your Mission**: Step into the role of a sports performance analyst. Your team will explore how the body's systems power elite athletes and use cutting-edge sports science technology to measure and interpret real performance data. ## **Pre-Visit Activity** | Reaction | 10 mins | Watch: How to improve reaction times like a pro Link: https://www.youtube.com/watch?v=0l4xEIJDEZc | | | |--------------------------|---------|---|--|--| | Time Like a
Pro | | | | | | | | Checkpoint prompts: Which body systems are involved in explosive sport performance? What is the role of the muscular system in a vertical jump? How do the cardiovascular + respiratory systems combine to deliver oxygen to muscles? How might these systems differ in sprinters vs endurance athletes? | | | | System
Synergy
Map | 20 mins | Task: Create a simple systems flow diagram (paper, whiteboard, or Canva) showing: Brain → nerves → muscles → movement. Heart + lungs → blood → muscles → recovery. Add a note on how fatigue affects each system. Checkpoint: Can you show at least one positive feedback loop (e.g., increased breathing rate → more oxygen delivery)? | | | | Mini
Experiment | 15 mins | Pair up and test reaction times using a ruler drop OR an online tool (https://www.humanbenchmark.com/tests/reactiontime). Record 3 trials per student. Discuss : What factors (fatigue, focus, anticipation) might affect your scores? | | | ## Post-Visit Activity | Data Forensics | 30 mins | Students receive anonymised Excel data from their workshop, including: • Heart rate across the day • Timing gates (Box Drill, L Drill, 5-10-5) • Force decks (Countermovement Jump, IMTP) • Gym Aware RS (Peak/Mean Velocity) Tasks: • Create bar graphs comparing reaction time by drill. • Analyse asymmetry in jump results (left vs right leg). • Calculate average velocities for barbell lifts. Checkpoint: Which students show signs of imbalance, fatigue, or explosive strength? | | | |-----------------------------|---------|--|--|--| | Systems in Action | 20 mins | Discussion prompts: What does your reaction time data suggest about neuromuscular performance? How could an athlete use asymmetry results to guide training/rehab? Why are force plates more reliable than visual assessment? What muscles drive a countermovement jump? How do muscular and respiratory systems interact during repeated efforts? | | | | Training
Recommendations | 20 mins | Scenario: A student's data shows poor concentric velocity + high asymmetry. Task: In pairs, write a 3-point training prescription for this athlete. Use terms like: • Strength-speed • Velocity zones • Movement patterns • Recovery strategies Teams share their recommendations in a 1-minute pitch. | | |