

Smart Energy Systems and Robotics

Your Mission: You are systems engineers of the future, working at the intersection of clean energy and robotics. Your challenge is to explore how technology can optimise solar energy, harness turbines, and program robots to solve energy challenges. Before arriving at Yarra Ranges Tech School, you must learn the fundamentals of both robot control and sustainable energy systems.

Pre-Visit Activity

Hook	10 mins	Watch:
		 VEXcode V5 Blocks – Getting Started
		 VEXcode V5 Blocks – Device Setup: Drivetrain
Virtual	20 mins	Task: Use <u>VEXcode VR</u> to program a virtual robot to drive around.
Robotics		 Open the Playground → try different environments (Art canvas,
		Mazes).
		 Program turns, loops, and sequences.
		Bonus: Try to make your robot trace a simple square or circle.
Solar	20 mins	Scenario: Imagine you're part of a team designing the solar-powered
Spark		city of the future.
		Research: How do solar cells turn sunlight into electricity?
		Activity: Create a quick sketch or infographic of how solar panels
		could power your robot or a community system (e.g., traffic lights,
		charging stations, or irrigation).
		Share: 2–3 ideas on how robotics could make solar systems
		smarter (e.g., sun-tracking panels, cleaning drones, Al-based
		energy storage).

Post-Visit Activity

VEX in the	10mins	Watch: The VEX Worlds Experience (2024)
Real World		Focus: Where can robotics take you? From school labs to international
		competitions.
Quiz Time	10 mins	Post-SESaR VEX Quiz - Details - Kahoot!
Solar	20 mins	Task: In VEXcode VR, program your robot to act like a solar tracker:
Robot Hack		 Try coding a robot that turns toward a target "light source" (e.g., a set point on the grid).
		 Imagine your robot is adjusting a solar panel for maximum efficiency.
		Bonus: Add a sensor input (like distance or colour) to simulate environmental feedback.
Future	10 mins	In pairs, students prepare a 1-minute energy innovation pitch / poster.
Energy Pitch		Prompt : "How could robotics and solar energy transform our community in the next 10 years?"
Reflection	5 mins	Which skill felt most valuable: coding, problem-solving, or creative design?
		 How can robotics help solve real-world clean energy challenges? Would you consider pursuing energy engineering or robotics as a career path?

