

VCE Chemistry – Detecting Parabens

Your Mission: You are analytical chemists investigating parabens (methyl-, ethyl-, propyl-, butyl-paraben) used as preservatives in cosmetics. Your job: move from label claims to lab evidence - designing tests, analysing calibration data, and communicating findings responsibly.

Pre-Visit Activity

Hook	10 mins	Watch: Chemist Breaks Down the Ingredients in \$54 "Clean" Foundation
HOOK	101111110	(WSJ Label Lab)
		Link: https://www.youtube.com/watch?v=Yv4G8c2hFqA (or your provided
		link)
		Prompt (quick notes):
		 List 5 common cosmetic ingredient types (e.g., solvent, emollient, preservative, fragrance, pigment).
		What does order of ingredients imply about relative
		concentration?
Ingredient	20 mins	Task: In pairs, audit two cosmetic products (real items or teacher-
Sleuth		supplied photos/labels).
		 Copy the ingredient lists into a Google Doc/Sheet.
		2. Highlight potential parabens and paraben-alternatives (e.g.,
		phenoxyethanol, benzoic acid, dehydroacetic acid).
		3. Tag each ingredient's function (preservative, solvent, emollient,
		etc.).
		4. Infer which ingredients are present at higher levels (based on order
		rules).
Beer's Law	15 mins	Tool: PhET Beer's Law Lab (interactive)
Warm-up		Link: https://phet.colorado.edu/sims/html/beers-law-lab/latest/beers-
		law-lab_en.html
		Mini-tasks:
		Build a calibration curve (Absorbance vs Concentration) and
		explain why linearity (R ²) matters.
		 Predict how you'll quantify parabens by UV-Vis/HPLC-UV in the
		post-mission lab data.
Reflection	10 mins	Think-pair-share:
		Why do we need calibration curves?
		What could make a result unreliable (matrix effects, pipetting)
		error, baseline drift, poor R²)?

Post-Visit Activity

Calibration	30 mins	Teacher provides: two paraben calibration sets (o.g. mothylperoben)
Forensics	30 1111118	Teacher provides: two paraben calibration sets (e.g., methylparaben) with slightly different R ² values and a set of unknown sample
Forensics		absorbances/peak areas.
		Student tasks (in pairs):
		, , , ,
		1. Plot two calibration curves; calculate slope/intercept/R ² .
		Use each curve to determine the concentration of the same unknown(s).
		3. Decide which curve is more reliable and justify (linearity,
		residuals, range, # of points).
		4. Identify uncertainty sources: volumetric glassware, autosampler
		precision, lamp drift, integration, matrix effects.
		5. Propose procedural refinements (matrix-matched standards,
		internal standard, blank correction, more points across range).
Method	20 mins	Scenario: Your school receives three "paraben-free" cosmetics. Design a
Design		follow-up experiment to verify the claim.
		Teams propose:
		• Sample prep: weigh ~0.200 g, extract with ethanol or 50:50
		MeOH:H ₂ O, vortex/sonicate, centrifuge, filter (0.45 μm).
		Calibration range: pick ppm/mg L ⁻¹ range spanning expected
		levels (e.g., 0.5–20 mg L ⁻¹).
		 Chromatography: HPLC-UV at ~254 nm (or school-available UV-
		Vis with standard additions).
		 Quality controls: blanks, spike-recovery (80–120%), replicate
		injections, internal standard (e.g., p-hydroxybenzoic acid ethyl
		ester).
Green	15 mins	Prompt: "Should analytical techniques that use toxic solvents (e.g.,
chemistry		acetonitrile/hexane) be phased out in school and industry labs?"
and ethics		Discuss & decide:
		Waste: generation, disposal, cost.
		Health risks: exposure, ventilation, PPE.
		• Alternatives: ethanol/water mobile phases, supercritical CO ₂ ,
		SPME (solid-phase microextraction), microscale sample prep.
	45 .	Trade-offs: sensitivity/throughput vs sustainability.
Consumer	15 mins	Create a 1-minute PSA or infographic:
Report		"What 'paraben-free' really means,"
		how labs test for parabens,
		how to read labels responsibly.
		Audience: school community or parent newsletter.

